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Abstract—Evolutionary algorithms have been successfully 

exploited to solve multiobjective optimization problems. In 

literature, a heuristic approach is often taken. For a chosen 

benchmark problem with specific problem characteristics, the 

performance of multiobjective evolutionary algorithms (MOEAs) 

is evaluated via some heuristic chosen performance metrics. The 

conclusion is then drawn based on statistical findings given the 

preferable choices of performance metrics. The conclusion, if any, 

is often indecisive and reveals no insight pertaining to specific 

problem characteristics that the underlying MOEA could perform 

the best. In this paper, we introduce an ensemble method to 

compare MOEAs by combining a number of performance metrics 

using double elimination tournament selection. The double 

elimination design allows characteristically poor performance of a 

quality algorithm to still be able to win it all. Experimental results 

show that the proposed metrics ensemble can provide a more 

comprehensive comparison among various MOEAs than what 

could be obtained from single performance metric alone. The end 

result is a ranking order among all chosen MOEAs, but not 

quantifiable measures pertaining to the underlying MOEAs. 

 
Index Terms—Double elimination design, ensemble method, 

evolutionary algorithms (EAs), performance metrics. 

 

I. INTRODUCTION 

volutionary d algorithms  have  established themselves          

as the approaches for exploring the Pareto-optimal fronts in 

multiobjective optimization problems. Multiobjective 

Evolutionary Algorithms (MOEAs) do not guarantee to identify 

optimal tradeoffs, but attempt to find a good approximation. 

Although numerous MOEAs are available today, effort is made 

in the continuing pursuit of more efficient and effective designs 

to search for Pareto optimal solutions for a given problem. By 

the No Free Lunch theorem [1], any algorithm’s elevated 

performance over one class of problems is exactly paid for in 

loss over another class. Therefore, comparative studies are 

always conducted [2]. They aim at revealing advantages and 

weaknesses of the underlying MOEAs and at determining the 

best performance pertaining to specific class of problem 

characteristics. However, in absence of any established 
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comparison criteria, none of the claims based on heuristically 

chosen performance metrics for the Pareto-optimal solutions 

generated can be made convincingly. In literature, when an 

MOEA is proposed, a number of benchmark problems are often 

selected to quantify the performance. Since these are artificially 

crafted benchmark functions, their corresponding Pareto fronts 

can be made available to measure the performance. Based on a 

set of heuristically chosen performance metrics, the proposed 

MOEA and some competitive representatives are evaluated 

statistically given a large number of independent trials. The 

conclusion, if any is drawn, is often indecisive and reveals no 

additional insight pertaining to the specific problem 

characteristics that the proposed MOEA would perform the best 

[3-4].  

Zitzler et al. [2] proposed three optimization goals to be 

measured: the distance of the resulting non-dominated set to the 

Pareto-optimal front should be minimized, a good (in most 

cases uniform) distribution of the solutions found in objective 

space is desirable, and the extent of the obtained non-dominated 

front should be maximized. In literature, there are many unary 

performance metrics used to compare MOEAs. These metrics 

can be broadly divided into five categories according to the 

optimization goals. Each category mainly evaluates the quality 

of a Pareto-optimal set in one aspect only.  The first category 

involves metrics assessing the number of Pareto optimal 

solutions in the set: Ratio of Non-dominated Individuals (RNI) 

[5] measures the proportion of the non-dominated solutions 

found  with respect to the population size; Error Ratio (ER) [6] 

checks the proportion of non true Pareto points in the 

approximation front over the population size; Overall 

Non-dominated Vector Generation (ONVG) [6] simply counts 

the number of distinct non-dominated individuals found; and the 

n-ary performance metric, Pareto Dominance Indicator (NR) 

[7], measures the ratio of non-dominated solutions contributed 

by a particular approximation front to the non-dominated 

solutions provided collectively by all approximation fronts. 

Within the second category, metrics measuring the closeness of 

the solutions to the theoretical Pareto front are given: 

Generational Distance (GD) [6] measures how far the evolved 

solution set is from the true Pareto front; a complementary 

metric of GD called Inverted Generational Distance (IGD) [8] 

concerns how well is the Pareto-optimal front represented by the 

obtained solution set; and Maximum Pareto Front Error 

(MPFE) [6] focuses on the largest distance between the 

individual in the theoretical Pareto front and the points in the 

approximation front. In the third category, metrics are relating 
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on distribution of the solutions: Uniform Distribution (UD) [5] 

quantifies the distribution of an approximation front under a 

pre-defined parameter; Spacing [9] measures how evenly the 

evolved solutions distribute themselves; and Number of Distinct 

Choices (NDC) [10] identifies solutions that are sufficiently 

distinct for a special value . Fourth, metrics concerning spread 

of the solutions are included: Maximum Spread (MS) [2] 

measures how well the true Pareto front is covered by the 

approximation set. In the last category, metrics consider both 

closeness and diversity at the same time: Hyperarea and Ratio 

(or Hypervolume Indicator) [6, 11] calculates the volume 

covered by the approximation front with respect to a properly 

chosen reference point.  

Furthermore, there are some binary performance metrics 

used to compare a pair of algorithms. I  [12] defines an 

-dominant relation between algorithms, enclosing hypercube 

indicator and coverage difference metrics (D-metric) [13]. The 

C-metric, or Set Coverage, considers the domination relations 

between two algorithms, i.e., how good an approximation front 

obtained from one algorithm dominates an approximation front 

obtained by another algorithm and vice versa [14]. 

However, no single metric alone can faithfully measure 

MOEA performance. Every metric can provide some specific, 

but incomplete, quantifications of performance and can only be 

used effectively under specified conditions. For example, UD 

does a poor job when the Pareto front is discontinuous, while 

Hypervolume Indicator can be misleading if the Pareto optimal 

front is non-convex [6]. This implies that one metric alone 

cannot entirely evaluate MOEAs under various conditions. 

Every metric focuses on some problem-specific characteristics 

while neglects information in others. Every carefully crafted 

metric has its unique attribute; no metrics alone can substitute 

others completely. Therefore, a single metric alone cannot 

provide a comprehensive measure for MOEAs. For a specific 

test problem, we cannot ascertain which metrics should be 

applied in order to faithfully quantify the performance of 

MOEAs. Common practice is to exploit various metrics to 

determine which combination is a better choice. Apparently, 

this process adds a heavy computational cost.  

To overcome these deficiencies and arrive at a fair evaluation 

of MOEAs, performance metrics ensemble is proposed in this 

research work. The ensemble method uses multiple metrics 

collectively to obtain a better assessment than what could be 

obtained from any of single performance metric alone. Metrics 

ensemble not only can give a comprehensive comparison 

between different algorithms, but avoid the choosing process 

and can be directly used to assessing MOEAs. 

In literature, the ensemble approaches can be found in 

statistics and machine learning. Supervised learning algorithms 

search through a space to find a suitable hypothesis that will 

make good predictions for a given problem.  Ensemble methods 

combine multiple hypotheses to form a better one than could be 

obtained from any of the constituent models [15]. It always 

combines many weak learners in an attempt to produce a strong 

one. Furthermore, ensembles tend to yield better results when 

there is a significant diversity among the models [16]. There are 

some well-regarded designs: bagging [17], boosting [18], 

Bayesian model averaging [19], stacked generalization [20] and 

the random subspace method [21]. The application of multiple 

performance metrics is first introduced by Zitzler et al. in [22]. 

They discuss how to use hierarchies of metrics so that each 

metric is a refinement of the preference structure detected by a 

lower-level metric. However, there exists no publication in 

literature, to our best knowledge, regarding performance 

metrics ensemble. Without any reference information, MOEAs 

are evaluated and compared based on a single metric at a time. 

In this paper, we propose a double elimination tournament 

selection operator to compare approximation fronts obtained 

from different MOEAs in a statistically meaningful way. The 

double elimination design allows characteristically poor 

performance of a quality algorithm to still be able to win it all. In 

every competition, one metric is chosen randomly to compare. 

After the whole process, every metric could be selected multiple 

times and a final winning algorithm is to be identified. This final 

winner would have been compared under all the metrics 

considered so that we can make a fair conclusion based on an 

overall assessment. 

The remaining sections complete the presentation of this 

paper. Section 2 provides the consolidated literature review on 

the performance metrics proposed in literature. Section 3 

describes the proposed performance metrics ensemble approach 

in detail, including the double elimination tournament selection 

operator. In Section 4, we elaborate on the experiment results 

for selected benchmark problems. Finally, a conclusion is 

drawn in Section 5 along with pertinent observations. 

 

II. LITERATURE REVIEW ON PERFORMANCE METRICS  

Selected performance metrics will be briefly reviewed 

according to the way how they are classified in this paper. 

A. Metrics Assessing the Number of Pareto Optimal   

Solutions in the Set 

1) Ratio of Non-dominated Individuals (RNI) [5]: 

The performance measure of an approximation front X is: 

n

X
RNI  ,                                                                       (1) 

where X  denotes the set of non-dominated individuals in 

population X  whose size is n . Clearly  1,0RNI , the larger 

is the better. When 1RNI , it implies all the individuals in X  

are non-dominated. When 0RNI , it implies none of the 

individuals in X is non-dominated. RNI is a significant 

measure in that it checks the proportion of non-dominated 

individuals in population, X . 

2) Error Ratio (ER) [6]: 

It is defined as the proportion of non true Pareto points: 

n

n
i i

xe
ER

  1
)(

. (2) 
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i
x  denotes an individual in an approximation front X and n  is 

the number of individuals in X . 0)( 
i

xe , if 
truei

PFx  . 

Otherwise, 1)( 
i

xe . 
true

PF  denotes the true Pareto set. This 

metric does assume the 
true

PF  is made available. Lower values 

of ER refer to smaller proportions of non-true Pareto points in X 

and represent better non-dominated sets. 

3) Overall Non-dominated Vector Generation (ONVG) [6]: 

It measures the number of non-dominated individuals found 

in an approximation front during MOEA evolution. It is defined 

as:  

known
PFONVG  , (3) 

where 
known

PF  represents the obtained approximation front. 

From [23], too few individuals in 
known

PF  make the front’s 

representation poor and too many vectors may overwhelm the 

decision maker. Also, [24] proves that algorithm A outperforms 

B  on this metric does not necessarily imply algorithm A  is 

clearly better than B . 

4) Pareto Dominance Indicator (NR) [7]: 

Considering the approximation fronts, 
m

AAA ,,,
21
  

obtained by different algorithms, this n-ary metric measures the 

ratio of non-dominated solutions that is contributed by a 

particular solution set 
1

A  to the non-dominated solutions 

provided by all algorithms: 

B

BA
AAANR

m




1

21
),,,(  , (4) 

where  
imjii

bAAAabbB  )(,
21

 , and 

ij
ba   implies that 

j
a  dominates 

i
b . 

1A  is the set under 

evaluation. 

B. Metrics Measuring the Closeness of the Solutions to the 

True Pareto Front 

1) Final Generational Distance (GD) [6]: 

n

d
GD

n

i i 


1

2

, (5) 

where )()(min
jtruei

j
i

xPFxfd   refers to the distance in 

objective space between individual 
i

x and the nearest member 

in the true Pareto front, and n  is the number of individuals in the 

approximation front. This metric, assuming 
true

PF is readily 

available, is a measure representing how “far” the 

approximation front is from the true Pareto front. Lower value 

of GD represents a better performance. 

2) Inverted Generational Distance (IGD) [8] 

This metric measures both convergence and diversity. Let 

true
PF is a set of uniformly distributed solutions in true Pareto 

front. X is the set of non-dominated solutions in the 

approximation front 
known

PF : 

 

true

true

PF

PFv Xvd
IGD

 


,
                                 (6) 

 Xvd ,  denotes the minimum Euclidean distance between v  

and the points in X . To have a low value of IGD, the set X  

should be close to 
true

PF  and cannot miss any part of the whole 

true
PF . 

3) Maximum Pareto Front Error (MPFE) [6]: 

It measures a worst case scenario in term of the largest 

distance in the objective space between any individual in the 

approximation front and the corresponding closest vector in the 

true Pareto front. 

i
i

dMPFE max . (7) 

i
d , defined earlier, is referred to as the distance in objective 

space between individual 
i

x and the nearest member in the true 

Pareto front. From [23], for a non-dominated set, a good 

performance in MPFE does not ensure it is better than another 

one with a much worse MPFE.   

C. Metrics Focusing on Distribution of the Solutions 

1) Uniform Distribution (UD) [5]: 

It measures the distribution of non-dominated individuals on 

the found trade-off surface. For a given set of non-dominated 

individuals X  in a population X: 

nc
S

UD



1

1
, (8) 

where 
 

1

)()(
1

2






 

X

N

i i

nc
N

Xncxnc
S

X

 is the standard deviation 

of niche count of the overall set  of non-dominated individuals 

in X , 
X

N  is the size of the set X , and )(Xnc  is the mean 

value of niche counts, 
Xi

Nixnc ,,2,1),(  . Specifically, 

niche count of individual 
i

x  is defined as  

 

.
otherwise,0

),( if,1
),(

,),()(
,1



 



 


shareji

ji

N

ijj
jii

xxd
xxSh

xxShxnc
X


 

),(
ji

xxd
 
is the distance between individuals 

i
x  and 

j
x  in the 

objective space, and 
share  is a user-defined parameter to 

quantify the closeness. 

2) Spacing [9]: 

This metric is a value measuring how evenly the 

non-dominated solutions are distributed along the 

approximation front, 

 


n

i

d
i

d
n

S
1

2)(
1

, (9) 

where 
i

d is the Euclidean distance in objective space between 

individual 
i

x and the nearest member in the true Pareto front, 

and n  is the number of individuals in the approximation front. 

This metric requires low computational overhead and can be 

generalized to more than two dimensions. 

3) Number of Distinct Choices (NDC) [10]: 
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In this metric, only those solutions that are sufficiently 

distinct from one another should be accounted for as useful 

design options. Let , )10(   , be a user specified parameter 

which can be used to divide an m-dimensional objective space 

into m/1  number of small grids. Each of the grids refers to 

indifference region )(qT


wherein any two solutions within the 

same grid are considered similar to one another. The quality 

),( PqNT


 indicates whether or not there is any individual 

Pp
k
   that falls into the region )(qT


. Specifically 










)(,,0

)(,,1
),(

qTpPp

qTpPp
PqNT

kk

kk






.  

)(PNDC


 defines the number of distinct choices for a 

pre-specified value of : 

  













1)/1(

0

1)/1(

0

1)/1(

02 1

),()(
  



ml l l

PqNTPNDC   (10) 

From [10], for a pre-specified value of , an observed Pareto 

solution set with a higher value of the quantity )(PNDC


 is 

preferred to a set with a lower value.  

D. Metrics Concerning Spread of the Solutions 

1) Maximum Spread (MS) [2]: 

It addresses the range of objective function values and takes 

into account the proximity to the true Pareto front, assuming 

available. This metric is applied to measure how well the 
truePF  

is covered by the
known

PF . 


 

















M

i
itrueitrue

itrueiknownitrueiknown

PFPF

PFPFPFPF

M
MS

1

2

min

,

max

,

min

,

min

,

max

,

max

,
),max(),min(1    (11) 

where max

,iknown
PF

 
and min

,iknown
PF  are the maximum and minimum of 

the ith objective in
known

PF , respectively; and max

,itrue
PF  and min

,itrue
PF  

are the maximum and minimum of the ith objective in
true

PF , 

respectively. M denotes the number of objectives considered. A 

higher value of MS reflects that a larger area of the 
true

PF  is 

covered by the
known

PF . 

E. Metrics Considering both Closeness and Diversity 

1) Hyperarea and Ratio (Hypervolume Indicator) [6, 11]: 

It calculates the hypervolume of the multi-dimensional 

objective space enclosed by approximation front 
known

PF  and a 

reference point. For example, an individual 
i

x  in  
known

PF  for a 

two-dimensional MOP defines a rectangle area, )(
i

xa , bounded 

by an origin and )(
i

xf . The union of such rectangle areas is 

referred to as Hyperarea of
known

PF , 










knownii

i
known

PFxxaPFH )()(   (12) 

As pointed out in [11], this metric requires defining a 

reference point of the region and could be misleading if 
known

PF  

is nonconvex. In [25], suggestion is given as how to properly 

choose a reference point. In [6], Veldhuizen also propose a 

Hyperarea Ratio metric defined as: 

)(

)(

true

known

PFH

PFH
HR  . (13) 

Apparently, 
true

PF is given as a reference. In the proposed 

performance metrics ensemble to be presented in the next 

section, we adopt the Hyperarea Ratio metric. 

 

III. PERFORMANCE METRICS ENSEMBLE 

A. The Proposed Framework 

Figure 1 shows the process of Performance Metrics Ensemble 

proposed. The final output from the performance metrics 

ensemble is a ranking order of all MOEAs considered. Please 

note the proposed design does not provide a quantifiable 

performance measure for a given MOEA. Instead it attempts to 

rank the selected MOEAs comprehensively through a collection 

of performance metrics. A number of MOEAs are presented as 

input. Given the same initial population, each of MOEAs 

considered generates an approximation front. Among these 

approximation fronts, a winning front is selected according to a 

randomly chosen performance metric. To arrive at a statistically 

meaningful conclusion, 50 independent trials are conducted. 

This process results into 50 approximation fronts deriving from 

the MOEAs considered. A double elimination tournament 

selection is applied to these 50 approximation fronts and one 

ultimate winning approximation front will be identified. The 

MOEA which is responsible to this approximation front will be 

assigned with ranking one. This MOEA is regarded as the 

winning algorithm among all MOEAs participated. The 

approximation fronts which are generated by this winning 

MOEA will be removed from 50 approximation fronts. The 

remaining approximation fronts will then go through another 

round of double elimination tournament to identify the second 

winning MOEA with ranking two. The process will repeat until 

the complete ranking order of all MOEAs considered is 

assigned. 
 

 
 

Fig. 1 The proposed framework for Performance Metrics Ensemble 
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B. Double Elimination Tournament 

The proposed Double Elimination Tournament down selects 

an approximation front (as the winning front) out of all 

approximation fronts available using a series of binary 

tournament selections. In each tournament selection, a 

performance metric from metrics ensemble is randomly chosen 

for comparison. 

Figure 2 depicts the process of double elimination 

tournament in a general setting. Suppose the tournament has a 

pool size of N approximation fronts to begin with. The N/2 

“qualifier” binary tournaments are held as normal, and the 

whole pool is divided into two parts: winner bracket contains 

N/2 winners and loser bracket N/2 losers. Then, in each of the 

bracket, N/4 binary tournament selections are competed so that 

each part is further divided again. In both parts, there are N/4 

new winners and N/4 new losers. The N/4 losers from loser 

bracket will lose twice and be eliminated from further 

consideration. The N/4 winner from winner bracket will be 

reserved in winner bracket for the next round of competition. 

Additionally, N/4 losers from winner bracket and N/4 winners 

from loser bracket will be paired for binary tournaments. 

Specifically, one approximation front from winner bracket and 

one from loser bracket will be matched for a binary tournament. 

Afterward, we obtain N/4 winners which will be placed in the 

loser bracket for the next round of competition. Those N/4 

losers lost twice and will be eliminated from the pool. This 

process reduces the total number of approximation fronts in the 

pool from N to N/2 (i.e., N/4 in winner bracket and N/4 in loser 

bracket). Repeat the same process; the number of candidate 

approximation fronts will be trimmed down from N/2 to N4, 

N/4 to N/8, and eventually down to 2. The remaining two will 

then compete given a randomly chosen performance metric. If 

the one from winner bracket wins, it will be declared as the final 

winner. If the one from loser bracket wins, one more round of 

competition will be held to decide the ultimate winner. Please 

note if N is an odd number to begin with the double elimination 

tournament process, one approximation front randomly chosen 

will be held back and (N-1)/2 binary tournaments will be called. 

After competitions, the one that was held back will be added 

into both the winner bracket and loser bracket to assure it will be 

fully considered in the competition process. 

The motivation for applying the double elimination 

tournament is that it gives every individual approximation front 

at least two chances to take part in the competition. This design 

would be helpful to preserve good approximation fronts. 

Because of the stochastic process, one quality approximation 

front may lose the competition if a biased performance metric is 

chosen. For example, for a benchmark problem with 

discontinuous Pareto front, performance metric UD will not 

offer a fair assessment. If this occurs in the single elimination 

tournament, a quality front could be lost forever. However, in 

the double elimination tournament, even an approximation front 

loses once; it still has an opportunity to compete and to win it all. 

Double elimination design allows a characteristically poor 

performance of a quality MOEA under the special environment 

still be able to win it all. 

 

 
Fig. 2 The process of Double Elimination Tournament 

 

Specifically, each competing MOEA will produce an 

approximation front given the same initial population. One will 

be donned as the winner using a randomly chosen performance 

metric. Out of 50 independent runs, 50 approximation fronts 

will be resulted. Some may come from the same MOEA. It is 

also possible that an MOEA has no representation in the 50 

approximation fronts. Out of such a large number of 

competitions, most likely every performance metric will be 

chosen multiple times to compete. 

In Figure 3(a), 25 pairs of binary tournaments will be held to 

result 25 winners in winner bracket and 25 losers in loser 

bracket. In every competition, a randomly chosen performance 

metric from metric ensemble will be used. In each bracket, one 

approximation front will be randomly chosen. The remaining 24 

approximation fronts will form 12 pairs of binary tournaments. 

The one that was held back will join both winner bracket and 

loser bracket to result into 13 winners and 13 losers in each 

bracket. Those 13 winners from winner bracket will be reserved 

as winners for the next round of double elimination tournament. 

Those 13 losers from loser bracket, which lost twice already, 

will be eliminated from the candidate pool. 13 losers from 

winner bracket and 13 winners from loser bracket are then 

paired to compete. 13 winners will be reserved as losers in the 

next round of double elimination tournament, while 13 losers 

which lost twice each and will be eliminated from further 

consideration. 

In Figure 3(b), 13 remaining approximation fronts are in the 

winner bracket while 13 are in the loser bracket. A similar 

process of double elimination tournament continues to trim 

down the number of approximation fronts to 7 winners and 7 

losers. 14 more approximation fronts will be eliminated from 

the pool. In Figure 3(c), 7 remaining approximation fronts are in 

the winner bracket and 7 are in the loser bracket. A similar 

process repeats to cut down the number of approximation fronts 

to 4 winners and 4 losers. 8 more approximation fronts will be 

eliminated from the pool. In Figure 3(d), the process takes one 

more step to down select the number of approximation fronts to 
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2 winners and 2 losers, while in Figure 3(e), one more step 

results into one winner and one loser. In Figure 3(f), the 

remaining two will compete based on a randomly chosen 

performance metric. If the one from winner bracket wins, it will 

be declared as the final winner. If the one from loser bracket 

wins, one more round of competition will be held to decide the 

ultimate winner. The MOEA which is responsible to the 

ultimate winning approximation front will be honored as the 

winning MOEA with ranking order one. Please note 101 binary 

tournaments will be called to decide the overall winning MOEA 

beginning with 50 approximation fronts. 

 

 
 

Fig. 3(a). From 50 individuals down to 26 individuals 

 

 
 

Fig. 3(b). From 26 individuals down to 14 individuals 

 
 

 
 

Fig. 3(c). From 14 individuals down to 8 individuals 

 
 

Fig. 3(d). From 8 individuals down to 4 individuals 

 

 
 

Fig. 3(e). From 4 individuals down to 2 individuals 

 
 

 
 

Fig. 3(f). From 2 individuals down to 1 winner 

 

Those approximation fronts out of original 50, if generated 

from the winning MOEA, will be removed from the candidate 

pool. The double elimination tournament process repeats until a 

winning approximation front is found and the MOEA which is 

responsible to this winning approximation front will be declared 

as the second winning MOEA with ranking order two. The 

process repeats until all MOEAs are ranked. 

IV. EXPERIMENTAL RESULTS 

A. Selected MOEAs for Comparison 

In the experiment, five state-of-the-art MOEAs are chosen for 

competition. They are SPEA 2 [26], NSGA-II [27], IBEA [28], 

PESA-II [29], and MOEA/D [30]. In the proposed framework, 

no restriction is placed upon any MOEAs ever developed. 

Indeed, even multiobjective particle swarm optimization 

algorithms [31-32] could be considered, as long as a population 

based heuristic is adopted to solve a multiobjective optimization 

problem. A brief overview of each chosen MOEA is given 

below. 
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SPEA 2 [26] assigns a strength value to each individual in 

both main population and elitist archive which incorporates 

both dominated and density information. To avoid individuals 

dominated by the same archive members having identical 

fitness values, both dominating and dominated relationships are 

taken into account. The final rank value of a current individual 

is generated by the summation of the strengths of the individuals 

that dominate it. The density value of each individual is 

obtained by the nearest neighbor density estimation. The final 

fitness value is the sum of rank and density values. In addition, 

the number of elitists in elitist archive is maintained to be 

constant.  

NSGA-II [27] proposes a non-dominated sorting approach to 

assign Pareto ranking and a crowding distance assignment 

method to implement density estimation for each individual. In 

a tournament selection design between two individuals, the one 

with a lower rank value or the one located in a less crowded 

region when both belong to the same front will be selected. A 

fast non-dominated sorting approach, an elitism scheme, and a 

parameter-less niching sharing method are combined to produce 

a better spread of solutions in some testing problems.  

The main idea of IBEA [28] is to apply a binary performance 

measure directly to the selection process. IBEA is combined 

with arbitrary indicators which are first defined by the 

optimization goal and can be adapted to the preferences of the 

user without any additional diversity preservation mechanism 

such as fitness sharing. 

In PESA-II [29], the unit of selection is a hyperbox in 

objective space. PESA-II assigns selective fitness to the 

hyperboxes in objective space which are occupied by at least 

one individual in the current approximation to the Pareto front. 

The resulting selected individual is randomly chosen from the 

hyperbox. This method is more effective to obtain a good spread 

in the front than selection based on individuals.  

MOEA/D [30] decomposes a multiobjective optimization 

problem into a number of scalar optimization subproblems and 

optimizes them simultaneously. MOEA/D has lower 

computational complexity at each generation because each 

subproblem is optimized by only using information from its 

several neighboring subproblems.  

B. Selected Benchmark Test Problems 

We utilize five widely used bi-objective ZDT test instances 

(i.e., ZDT 1, ZDT 2, ZDT 3, ZDT 4, and ZDT 6) [14], a 

3-objective DTLZ 2 [28, 33], two 5-objective WFG 1 and WFG 

2 [34], and a 10-objective DTLZ 1 [28, 33] in comparing all 

MOEAs. These benchmark functions are carefully crafted to 

exploit specific problem characteristics to challenge the 

underlying MOEAs at hand. 

C. Selected Performance Metrics 

In Section 1, we have broadly classified performance metrics 

into five groups. In this experiment, five metrics from each of all 

five different groups are chosen. They are Pareto Dominance 

Indicator (NR), Inverted Generational Distance (IGD), 

Spacing, Maximum Spread (MS), and Hypervolume Indicator 

(also called S-metric in [13]). The less the IGD and Spacing 

values, the better the algorithm’s performance; the more the NR, 

MS, and S values, the better the algorithm’s performance. 

Please note binary performance metrics, such as  -indicator or 

C-metric, can be easily adopted into the proposed design since 

binary tournament is used here as a baseline.  

In S-metric, we define the reference point according to [25] 

for different benchmark problems. That is, for ZDT1 and ZDT4, 

we choose the reference point to be (3, 100). The choices of 

reference points for ZDT 2, ZDT 3, ZDT 6 and 3-objective 

DTLZ 2 are (3/2, 4/3), (100, 5.446), (1.497, 4/3), (1.180, 1.180, 

1.180), respectively. For 5-objective WFG 1 and WFG 2, based 

on the multiple experiments results in [34], the reference point is 

set to be (20, 20, 20, 20, 20). For 10-objective DTLZ 1, each 

dimension of the reference point is set at 100. 

D. Parameter Setting in Experiment 

According to [26-30], the population size in all five MOEAs 

is set to be 100 for all of the 2-objective test instances, 300 for 

the 3-objective test instance, and 500 for the more than three 

objectives test instances. The stopping criterion is set at 250 

generations. Initial populations are generated by uniformly, 

randomly sampling from the search space in all the algorithms.  

The simulated binary crossover (SBX) and polynomial 

mutation are used in SPEA 2 [26], NSGA-II [27], IBEA [28], 

and MOEA/D [30]. The crossover operator generates one 

offspring, which is then modified by the mutation operator. 

Following the practice in [27], the distribution indexes in SBX 

and the polynomial mutation are set to be 20. The crossover rate 

is 1.00, while the mutation rate is 1/l and l is the number of 

decision variables. 

In IBEA [28], the Hypervolume indicator is selected as the 

comparison indicator. In PESA-II [29], the crossover rate is 

chosen to be 0.7 and uniform crossover is used. Hyper-grid size 

is 3232. Other control parameters remain identical. In 

MOEA/D [30], the number of the weight vectors in the 

neighborhood of each weight vector T is set to be 20.  

E. Experiment Results 

i. 2-objective ZDT 1 

1) Preliminary Iteration 

This step generates 50 approximation fronts as the initial 

population for double elimination tournament. In these 50 

winning fronts, SPEA 2 wins 19 times, NSGA-II wins 11 times, 

IBEA wins 3 times, PESA-II wins 5 times, and MOEA/D wins 

12 times. During the competitions,   performance metric is 

randomly chosen from five available metrics. In summary, IGD 

is used 11 times, NR 10 times, Spacing 12 times, S-metric 10 

times, and MS 7 times.  

2) Iteration 1 

This is the first step in the double elimination tournament that 

50 fronts are competed to survive 26 in the candidate pool. In 

these 26 fronts, SPEA 2 wins 9 times, NSGA-II wins 8 times, 

IBEA wins 0 time, PESA-II wins 1 time, and MOEA/D wins 8 

times. Note that IBEA is completely eliminated with any hope to 

win the overall competition.    
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The 50 approximation fronts are first paired into 25 binary 

tournaments. In this process, IGD is chosen 4 times, NR 7 times, 

Spacing 4 times, S-metric 6 times, and MS 4 times, respectively. 

The remaining process involves 12 binary tournaments to 

generate 13 winners reserved in a winner bracket for the next 

iteration, 12 binary tournaments to generate 13 losers to be 

eliminated from further consideration, and 13 binary 

tournaments to generate 13 fronts reserved in a loser bracket for 

the next iteration. Altogether 37 binary tournaments are held 

using 37 randomly chosen performance metrics: IGD is used 9 

times, NR 6 times, Spacing 7 times, S-metric 7 times, and MS 8 

times.  

3) Iteration 2 

In the second step of double elimination tournament, 26 

remaining approximation fronts are trimmed down to 14 in the 

candidate pool. In these remaining 14 fronts, SPEA 2 accounts 

for 6, NSGA-II 2, PESA-II 1, and MOEA/D 5 times.  

Out of 19 binary tournaments held in this iteration, 

performance metric of IGD is used 5 times, NR 4 times, Spacing 

5 times, S-metric twice, and MS 3 times.  

4) Iteration 3 

In the third step of double elimination tournament, 14 

approximation fronts remained in the pool are once again down 

select to 8 fronts. In these 8 fronts, SPEA 2 wins 3 times, 

NSGA-II wins twice, and MOEA/D wins 3 times. Note that 

PESA-II is also eliminated in this iteration.   

Out of 10 binary tournaments called in this iteration, IGD is 

chosen three times, NR 1 time, Spacing 3 times, S-metric 3 

times, while MS is not used at all.  

5) Iteration 4 

It is the fourth step of double elimination tournament, 8 

approximation fronts will be further reduced down to 4 

survivors. In these 4 fronts, SPEA 2 accounts for two wins and 

MOEA/D 2 times. Note that NSGA-II is eliminated in this 

iteration to be the ultimate winner. 

Out of 6 binary tournaments held in this iteration, IGD is 

chosen once, Spacing twice, S-metric once, and MS twice.  

6) Iteration 5 

In the fifth step of double elimination tournament, 4 

approximation fronts are trimmed one more time to two in the 

candidate pool. In these two remaining fronts, SPEA 2 wins 

once and MOEA/D wins once.  

Out of three competitions, performance metrics IGD is 

selected once, S-metric once, and MS once.  

7) Iteration 6 

In the final step of double elimination tournament, the 

ultimate winner is to be identified. The final winner is SPEA 2 

and performance metric, S-metric, is chosen to compete. Note 

SPEA 2 is coming from winner bracket. 

8) Iteration 7 

Removing all the fronts (i.e., 18) generated by SPEA 2 out of 

50 approximation fronts, the remaining 32 fronts continue 

through double elimination tournaments. MOEA/D is identified 

as the second winner with respect to the benchmark function 

ZDT 1. NSGA-II is the third winner. When the proposed 

framework complete, the resulting ranking order shows: rank 

1-SPEA 2, rank 2- MOEA/D, rank 3-NSGA-II, rank 4-PESA-II, 

and rank 5-IBEA for the benchmark function ZDT 1. 

Please note if S-metric is been used to compare SPEA 2 and 

NSGA-II, NSGA-II would be declared as the winner. However, 

if any of the remaining four performance metrics is been used, 

SPEA 2 will win the competitions. 

The experiment result in [30] also confirmed that MOEA/D 

performs better than NSGA-II in ZDT1. 

35 repeated and independent experiments (given different 

initial populations to begin with) on ZDT 1 show consistent 

finding in the ranking order. This implies the robustness of the 

proposed performance metric ensemble approach in ranking the 

selected MOEAs. 
 

ii. 2-objective ZDT 2 

Due to the similarity in the process, no detail is given here. 

The final ranking order for benchmark function ZDT 2 is: rank 

1-SPEA 2, rank 2-MOEA/D, rank 3-NSGA-II, rank 4-IBEA, 

and rank 5-PESA-II.  

During the process of generating the ultimate winner, SPEA 2, 

came from loser bracket, takes two rounds of competitions to 

beat NSGA-II to be donned the winner with rank one. In these 

two rounds of competitions, S-metric is first chosen as 

performance metric, while IGD is then used in the final binary 

tournament. Apparently, even though SPEA 2 is regarded as the 

winner from the ensemble, MOEA/D comes in as the close 

second. 

Also, in [30], MOEA/D shows better performance than 

NSGA-II in ZDT2. 
 

iii. 2-objective ZDT 3 

The final ranking order for benchmark function ZDT 3 is: 

rank 1-NSGA-II, rank 2-MOEA/D, rank 3-IBEA, rank 4- SPEA 

2, and rank 5-PESA-II.  

The experiment result in [30] also confirmed that MOEA/D 

performs worse than NSGA-II in this benchmark function. 

It is interesting to observe that if S-metric is been used to 

compare NSGA-II and MOEA/D, MOEA/D would be 

acknowledged as the winner. However, if any of the remaining 

four performance metrics is been used, NSGA-II will win the 

competitions. 
 

iv. 2-objective ZDT 4 

The final ranking order for benchmark function ZDT 4 is: 

rank 1-MOEA/D, rank 2-NSGA-II, rank 3-PESA-II, rank 4- 

IBEA, and rank 5-SPEA 2.  

It is interesting to observe that even SPEA 2 is the ultimate 

winner in ZDT 1 and ZDT 2 test functions; it is eliminated from 

the process in the early stage during every independent 

competition for ZDT4. It clearly implies that SPEA 2 has 

difficulties handling problems with many local Pareto-optimal 

fronts. 

Please note if IGD or NR was used to compare NSGA-II and 

MOEA/D, NSGA-II would win the close competition. However, 
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if other metrics are involved, MOEA/D will survive to be a 

close winner.  
 

v. 2-objective ZDT 6 

The final ranking order for benchmark function ZDT 6 is: 

rank 1-MOEA/D, rank 2-IBEA, rank 3-NSGA-II, rank 4-SPEA 

2, and rank 5-PESA-II. 

Reference [28] shows IBEA performs better than NSGA-II 

and SPEA 2, and reference [30] acknowledges the same result 

that MOEA/D performs better than NSGA-II in the test function 

ZDT 6. 

Again, SPEA 2 and PESA-II are eliminated at very early 

stage during every round of competitions. It appears SPEA 2 is 

having difficulties in handling problems with Pareto-optimal 

solutions non-uniformly distributed over the global Pareto front. 
 

vi. 3-objective DTLZ 2 

The final ranking order for benchmark function DTLZ 2 is: 

rank 1-IBEA, rank 2-MOEA/D, rank 3-SPEA 2, rank 4- 

NSGA-II, and rank 5-PESA-II.  

Reference [27] has suggested that SPEA 2 seems to possess 

advantages over NSGA-II in higher dimensional problems. In 

[28], IBEA is shown to be better than SPEA 2 and NSGA-II in 

this benchmark function. The experiment result in [30] has also 

identified that MOEA/D generates a better result than NSGA-II 

does. These findings throughout literature have been consistent 

to what we have observed through the proposed performance 

metrics ensemble. 

It is interesting to observe that IBEA which does not perform 

very well on ZDT1-ZDT4 benchmark problems is the clear 

winner of this three-dimensional test function. Please note if 

Spacing is been used to compare MOEA/D and IBEA, 

MOEA/D would be declared as the winner. However, if any of 

the remaining four performance metrics is used, IBEA win the 

competitions.   
 

vii. 5-objective WFG 1 

The final ranking order for benchmark function WFG1 is: 

rank 1-IBEA, rank 2-MOEA/D, rank 3-NSGA-II, rank 4- SPEA 

2, and rank 5-PESA-II.  

It is interesting to observe that if S-metric is been used to 

compare IBEA and MOEA/D, MOEA/D would be 

acknowledged as the winner. Actually, in the problem WFG1, 

these two algorithms have nearly equal performance.  Reference 

[35] also confirms the same result that IBEA is much better than 

NSGA-II in many-objective optimization problems.  

 

viii. 5-objective WFG 2 

The final ranking order for benchmark function WFG 2 is: 

rank 1-IBEA, rank 2-NSGA-II, rank 3-MOEA/D, rank 4- SPEA 

2, and rank 5-PESA-II.  

It is interesting to observe that if Spacing metric is used 

SPEA 2 receives a much better performance than others. That 

means, SPEA 2 has a good distribution between each 

individuals in the approximation front. However, it achieves a 

very low final ranking. This is because both convergence and 

spread measures of its approximation front are very poor. 

According to [34], NSGA-II is claimed to have a better 

performance than MOEA/D and SPEA 2 in WFG 2.  

IBEA is favored in both high-dimension objectives 

optimization problems (e.g., DTLZ2) and many-objectives 

optimization problem (e.g., WFG1 and WFG 2). This seems to 

imply that IBEA bears advantages over other algorithms to deal 

with challenges inherited through increasing the number of 

objectives.  

 

ix. 10-objective DTLZ 1  

The final ranking order for benchmark function DTLZ 1 is: 

rank 1-IBEA, rank 2-MOEA/D, rank 3-NSGA-II, rank 4- SPEA 

2, and rank 5-PESA-II.  

If Spacing metric is used to compare NSGA-II and SPEA 2, 

SPEA 2 would be acknowledged as the winner. Actually, in this 

problem, these two algorithms have nearly equal performance.  

Therefore, this experimental result does not contradict the 

conclusion in [27].  

Again, IBEA and MOEA/D perform much better than other 

MOEAs in this many-objectives optimization problem.  

F. Computational Complexity Analysis 

Assuming in the first 50 approximation fronts, each of five 

MOEAs is responsible for 10 fronts. The total number of metric 

evaluations needed to complete the ranking order for a given 

benchmark function is 804, including the 250 metric evaluations 

made to generate the 50 approximation fronts before the 

performance metrics ensemble process.  Every time one metric 

from ensemble is randomly chosen to evaluate one 

approximation front. 804 is considered an average measure for 

computational time of the proposed performance metric 

ensemble process. This is with respect to 1,250 metric 

evaluations if each of five metrics is used to quantify the 

performance of five MOEAs out of 50 independent trials. 

Given a desktop computer with Intel(R) 2.20 GHZ processor 

and 4GB of RAM, each experiment will be run for 35 

independent times. For a 2-objective benchmark problem, ZDT 

1, assuming each approximation front having 100 solutions and 

true Pareto-front having 15 solutions, the average CPU time for 

the proposed performance metrics ensemble process is 2.1723s, 

while the maximum time needed is 3.7680s and minimum 

1.2500s. For a 3-objective benchmark problem, DTLZ 2, 

assuming each approximation front having 300 solutions and 

true Pareto-front having 20 solutions, the average CPU time for 

performance metrics ensemble process is 7.6662s, while the 

maximum time needed is 13.9060s and minimum 4.6830s. For a 

5-objective benchmark problem, WFG 1, assuming each 

approximation front having 500 solutions and true Pareto-front 

having 100 solutions, the average CPU time for performance 

metrics ensemble process is 17.0892s, while the maximum time 

needed is 20.9790s and minimum 12.2570s. For a 10-objective 

benchmark problem, DTLZ 1, assuming each approximation 

front having 500 solutions and true Pareto-front having 200 

solutions, the average CPU time for performance metrics 
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ensemble process is 25.7763s, while the maximum time needed 

is 34.5440s and minimum 20.0700s. Table I shows the 

computational time (in second) of the performance metrics 

ensemble process for each test problem. 

 
Table I: 

Computational time for each test problem 
Problem Max. Time Ave. Time Min. Time 

2-obj ZDT 1 3.7680 2.1723 1.2500 

2-obj ZDT 2 3.6510 2.2104 1.2303 

2-obj ZDT 3 3.9230 2.1938 1.5091 

2-obj ZDT 4 4.2315 2.3019 1.2803 

2-obj ZDT 6 4.0129 2.2801 1.4671 

3-obj DTLZ 2 13.9060 7.6662 4.6830 

5-obj WFG 1 20.9790 17.0892 12.2570 

5-obj WFG 2 22.1061 17.4671 12.7629 

10-obj DTLZ 1 34.5440 25.7763 20.0700 

 

As expectedly, the computation time needed for performance 

metrics ensemble process grows in a polynomial order when the 

number of objectives increases. Meanwhile, different test 

problems with the same number of objectives call for nearly the 

same computational time, e.g., ZDT 1-ZDT 6. Therefore, the 

computational time of performance metrics ensemble process is 

mainly determined by the number of objectives involved in the 

test problem. 

G. Comparison Results between Individual Metric Alone 

and Metrics Ensemble  

The focus paid here is to compare the final ranking orders by 

each performance metric individually and by the proposed 

metric ensemble. In tables below, “A1” represents SPEA 2, 

“A2” NSGA-II, “A3” MOEA/D, “A4” PESA-II, and “A5” 

IBEA. From Tables II-III, in simple problems such as ZDT 1 

and ZDT 2, ranking orders generated by different metric 

individually are slightly different from each other. Metrics 

ensemble, more or less performing a majority vote, achieves a 

good compromise from all results collectively. 
 

Table II: 

Comparison Results of ZDT 1 

Rank IGD NR Spacing MS S Ensemble 

1 A1 A2 A1 A1 A1 A1 

2 A3 A1 A3 A3 A2 A3 

3 A2 A3 A2 A2 A3 A2 

4 A4 A4 A5 A4 A4 A4 

5 A5 A5 A4 A5 A5 A5 

 

Table III: 

Comparison Results of ZDT 2 

Rank IGD NR Spacing MS S Ensemble 

1 A1 A1 A1 A3 A1 A1 

2 A3 A2 A2 A1 A2 A3 

3 A2 A3 A3 A2 A3 A2 

4 A4 A4 A5 A4 A4 A5 

5 A5 A5 A4 A5 A5 A4 

 

Tables IV-VI shows comparison results in ZDT 3, ZDT 4, 

and ZDT 6, respectively. In each of the problem, there are some 

unique characteristics in the Pareto-optimal fronts that make the 

problem difficult to solve. Ranking orders generated by each 

metric individually contradict appreciably with each other. 

Metrics ensemble provides a comprehensive evaluation for all 

algorithms. 
 

Table IV: 

Comparison Results of ZDT 3 

Rank IGD NR Spacing MS S Ensemble 

1 A2 A2 A3 A5 A3 A2 

2 A3 A5 A2 A3 A2 A3 

3 A1 A3 A1 A2 A5 A5 

4 A4 A1 A5 A1 A1 A1 

5 A5 A4 A4 A4 A4 A4 

 

Table V:  

Comparison Results of ZDT 4 

Rank IGD NR Spacing MS S Ensemble 

1 A2 A2 A3 A3 A3 A3 

2 A3 A3 A4 A2 A2 A2 

3 A5 A4 A2 A1 A5 A4 

4 A4 A5 A5 A4 A4 A5 

5 A1 A1 A1 A5 A1 A1 

 

Table VI:  

Comparison Results of ZDT 6 

Rank IGD NR Spacing MS S Ensemble 

1 A3 A5 A4 A3 A3 A3 

2 A2 A3 A3 A2 A5 A5 

3 A5 A2 A5 A1 A2 A2 

4 A4 A1 A2 A4 A4 A1 

5 A1 A4 A1 A5 A1 A4 

 
Table VII: 

Comparison Results of 3-objective DTLZ 2 

Rank IGD NR Spacing MS S Ensemble 

1 A5 A2 A1 A3 A5 A5 

2 A3 A5 A3 A1 A1 A3 

3 A2 A1 A5 A5 A3 A1 

4 A1 A3 A2 A2 A4 A2 

5 A4 A4 A4 A4 A2 A4 

 
Table VIII: 

Comparison Results of 5-objective WFG 1 

Rank IGD NR Spacing MS S Ensemble 

1 A5 A2 A5 A1 A3 A5 

2 A2 A3 A3 A3 A5 A3 

3 A4 A5 A1 A2 A2 A2 

4 A3 A1 A2 A4 A1 A1 

5 A1 A4 A4 A5 A4 A4 

 

Table IX: 

Comparison Results of 5-objective WFG 2 

Rank IGD NR Spacing MS S Ensemble 

1 A5 A2 A1 A3 A2 A5 

2 A2 A5 A3 A2 A5 A2 

3 A3 A3 A2 A5 A3 A3 

4 A1 A1 A5 A4 A4 A1 

5 A4 A4 A4 A1 A1 A4 

 
Table X:  

Comparison Results of 10-objective DTLZ 1 

Rank IGD NR Spacing MS S Ensemble 

1 A5 A1 A2 A3 A3 A5 

2 A3 A5 A1 A5 A5 A3 

3 A1 A3 A3 A1 A1 A2 

4 A4 A2 A5 A4 A2 A1 

5 A2 A4 A4 A2 A4 A4 
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Tables VII-X shows the results in high-dimensional 

optimization problems: 3-objective DTLZ 2, 5-objective WFG 

1, 5-objective WFG 2, and 10-objective DTLZ 1. In each 

problem, ranking orders generated by each metric individually 

contradict severely with each other. We cannot draw any 

conclusion based on each single metric solely. Instead, metrics 

ensemble offers a rational evaluation for all MOEAs 

considered.  

Therefore, from above discussions, when the test function is 

simple, each individual metric alone and metrics ensemble share 

similar outcomes in performance evaluation. However, when 

the test function becomes more complicated, metrics ensemble 

provides a much more rational result than that of any metric 

alone. This is due to the drawback that any individual metric can 

only quantify one aspect of performance measure. When it 

comes to a highly complicated and challenging problem, it is 

better to use metrics ensemble than individual metric. Metrics 

ensemble can provide a more comprehensive comparison 

among various MOEAs than what could be obtained from any 

single performance metric alone. 

H. Blind Test  

An experiment is designed to blind test the performance 

through the proposed metrics ensemble with two of the same 

MOEAs. NSGA-II is chosen here for convenience. They are 

labeled as MOEA 1 and MOEA 2. The two algorithms go 

through the performance metrics ensemble process. One winner, 

either MOEA 1 or MOEA 2, will be chosen. The whole process 

is repeated 20 times. The approximation fronts from MOEA 1 

wins 11 times, while the approximation fronts from MOEA 2 

wins 9 times. It is observed that both algorithms perform 

relatively the same, as rightfully expected so.  

I. Choices of Performance Metrics 

In order to examine the correlation between the base 

performance metrics selected in ensemble and the final ranking 

orders, we construct an experiment and apply it to compare the 

same five MOEAs in benchmark functions ZDT 1 and ZDT 6. 

In the original ensemble, five metrics from each of five groups 

are chosen: NR, IGD, Spacing, MS, and S-metric. In the new 

ensemble, three new performance metrics from the respective 

same groups are chosen, instead of those from the original 

ensemble: RNI replaces NR, GD replaces IGD, and UD 

replaces Spacing. The remaining two metrics, MS and S-metric, 

are kept the same. To be exact, the five performance metrics 

used, one from each of five groups, in the new ensemble are RNI, 

GD, UD, MS, and S-metric. 

Follow the same process, in ZDT 1, the resulting ranking 

order shows: rank 1-SPEA 2, rank 2- MOEA/D, rank 

3-NSGA-II, rank 4-PESA-II, and rank 5-IBEA. This result is 

exactly the same as the one using the original ensemble metrics. 

Using the new metrics ensemble, the final ranking order for 

ZDT 6 is: rank 1-MOEA/D, rank 2-IBEA, rank 3-NSGA-II, 

rank 4-PESA-II, and rank 5-SPEA 2. There is only slight 

difference in ranks 4 and 5 between the new and the original 

ensembles.  

From above results, in both benchmark problems, final 

ranking orders from the new ensemble are very similar to, if not 

exactly the same as, those by the original ensemble. Properties 

of performance metrics appear to have no significant effect in 

the final rank result. It again supports the robust finding in 

ranking order among competing MOEAs through the proposed 

ensemble approach. 

In the new ensemble, metrics RNI may give contradictory 

indication of performance to the Pareto dominance in some 

extreme condition. For example, given two approximation 

fronts a and b, all solutions in b are dominated by solutions in a 

but when use RNI metric solely to evaluate these two fronts, 

fronts b will win. This happens because RNI only considers 

non-domination ratio within a front, not between competing 

fronts. The proposed metrics ensemble with double elimination 

scheme and stochastic mechanism, will not allow a single metric 

to dominate the final ranking order. 

J. Test on a Set of Similarly Structured Problems 

Instead of making a bold judgment in terms of the 

performance ranking for a given test function alone, it is more 

conclusive if the observation is made based on a collection of 

similarly structured benchmark functions. In this subsection, we 

conduct the experiment on test problem F8 [36], which shares 

similarly problem characteristics with ZDT 4 [34]. 

Both ZDT 4 and F8 introduce multimodality and have many 

local Pareto-optimal fronts. By the experiment result in ZDT 4, 

we have drawn a conclusion that MOEA/D does best when it 

encounters a test problem with a lot of local Pareto-optimal 

fronts. In order to substantiate this conclusion, we use the 

similar problem F8 to test selected MOEAs again.  

After applying the proposed performance metrics ensemble, 

the final ranking order for benchmark function F8 is: rank 

1-MOEA/D, rank 2-NSGA-II, rank 3-SPEA 2, rank 4-PESA-II, 

and rank 5- IBEA, while the ranking order for ZDT 4 is: rank 

1-MOEA/D, rank 2-NSGA-II, rank 3-PESA-II, rank 4- IBEA, 

and rank 5-SPEA 2. The overall winner remains unchanged in 

these two problems. 

Because the same result is observed based on a collective of 

similarly structured benchmark functions, we can confidently 

draw a conclusion that MOEA/D is good at handling problems 

with multimodality and lots of local Pareto fronts.  

Therefore, performance metrics ensemble allows a 

comprehensive measure and more importantly reveals 

additional insight pertaining to specific problem characteristics 

that the underlying MOEA could perform the best. 

K. Observations and Insights 

SPEA 2 is regarded as the ultimate winner in test problems 

ZDT 1 and ZDT 2 among five MOEAs selected. Although ZDT 

1 has a convex Pareto-optimal front while ZDT 2 has a 

non-convex counterpart to ZDT1, both ZDT1 and ZDT2 share 

some common characteristics. They do not have local 

Pareto-optimal fronts and their global Pareto-optimal fronts are 

continuous. From the above observation, we can safely state that, 

if the test problem has continues global Pareto-optimal fronts 
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and do not have local Pareto-optimal fronts, SPEA 2 will 

perform well in this type of MOPs in relevant to other MOEAs 

chosen for competitions. 

NSGA-II has the best performance in ZDT 3, which 

represents the discreteness feature and has a Pareto-optimal 

front consisting of several non-contiguous convex parts. 

Therefore, if there is a test problem with discrete Pareto-optimal 

front, NSGA-II could be considered as a preferable choice of 

MOEAs to solve the problem. 

MOEA/D wins in both ZDT4 and ZDT6. ZDT4 is difficult to 

solve because it has many local Pareto-optimal fronts. A large 

number of local Pareto-optimal fronts make the global Pareto 

front difficult to find and MOEAs need to exploit their ability to 

deal with multimodality. MOEA/D also wins in a similarly 

structured problem in F8. ZDT6’s Pareto-optimal solutions are 

non-uniformly distributed along the global Pareto front. The 

front is biased for solutions which have a large )(
1

xf  value. 

Therefore, MOEA/D will exhibit a good performance when it 

encounters a test problem which has a lot of local 

Pareto-optimal fronts or Pareto-optimal solutions are not 

uniformly distributed. 

IBEA wins in 3-objective DTLZ 2, 5-objective WFG 1 and 

WFG2, and 10-objective DTLZ 1. It appears to embrace 

advantages over other MOEAs to deal with high-dimension 

objectives problems. 

Once again, our observations confirmed with the findings 

from “No Free Lunch Theorem” for optimization [1]: any 

algorithm’s elevated performance over one class of problems is 

exactly paid for in loss over another class. Table XI provides a 

summary of specific problem characteristics that one MOEA 

(out of five chosen) would perform the best. 
 

TABLE XI:  

Summary of Specific Problem Characteristics that specific MOEAs would 

Perform the Best 

MOEA Characteristic of Problems it can solve effectively 

SPEA 2 Not have local Pareto-optimal fronts and  
global Pareto-optimal fronts are continuous. 

NSGA-II Pareto-optimal front represents the discreteness feature 
and consists of several noncontiguous convex parts. 

IBEA Have high-dimension objective 

MOEA/D Have a lot of local Pareto-optimal fronts; 
Pareto-optimal solutions are not uniformly distributed 
in its global Pareto front.  

 

V. CONCLUSION 

In literature, we have witnessed a growing number of studies 

devoted for MOEA. When an MOEA was proposed, a number 

of benchmark problems are often chosen ad hoc to quantify the 

performance. Given a set of heuristically chosen performance 

metrics, the proposed MOEA and some state-of-the-art 

competitors are evaluated statistically given a large number of 

independent trials. The conclusion, if any been drawn, is often 

indecisive and reveals no additional insight pertaining to the 

specific problem characteristics that the proposed MOEA 

would perform the best. On the other end, when an MOP 

application with real-world complications arises, we often have 

no clue which MOEA should be chosen to attain the best 

opportunity to be successful. When an MOEA was proposed in 

literature, no insight in this regard has even been offered. 

To address this concern, an ensemble method on performance 

metrics is proposed in this paper, knowing no single metric 

alone can faithfully quantify the performance of a given design 

under real-world scenarios. A collection of performance metrics, 

measuring the spread across the Pareto-optimal front and the 

ability to attain the global trade-off surface closeness, could be 

incorporated into the ensemble approach.  

A double elimination tournament selection operator is 

proposed to compare approximation fronts obtained from 

different MOEAs in a statistically meaningful way. The double 

elimination design avoids the risk of a quality MOEA from been 

easily eliminated due to an unfair assessment from a 

performance metric chosen. This design allows a 

comprehensive measure and more importantly reveals 

additional insight pertaining to specific problem characteristics 

that the underlying MOEA could perform the best. For a given 

real-world problem, if we know its problem characteristics (e.g., 

a Pareto front with a number of disconnected segments and a 

large number of local optima), we may make an educated 

judgment to choose the specific MOEA for its superior 

performance given the problem characteristics. Please note the 

proposed design does not provide an independent, quantifiable 

performance measure for a given problem. Instead, it attempts 

to rank the selected MOEAs comprehensively through a 

collective performance metrics. 

As a next step for this preliminary study, we plan to build a 

repository to comprehensive quantify a majority of 

state-of-the-art MOEAs considering a large number of 

benchmark functions and a large collection of performance 

metrics. In particular, the focus will be placed toward 

many-objective optimization problems. Recently, multiple 

comprehensive comparisons between latest improvements on 

NSGA-II and MOEA/D for many objectives problems have 

been made in [37-39], but only single performance metric is 

used therein. This is in hope to be able to identify specific 

problem characteristics pertaining to a particular MOEA. The 

efforts will also be extended into constrained MOPs [40-41] and 

dynamic MOPs [42]. Additionally, it also makes perfect sense 

to exploit ways to quantify the degree of betterment when one 

MOEA is ranked higher than another (i.e., how much better?). 

In summary, this study is based on the observations that 

“indecisive” or “inconclusive” findings are often produced 

when MOEAs are compared on specific test functions and those 

insights into how to match MOEAs to problems for which they 

are most suitable are thus lacking from the literature. The 

authors understand that appreciable progresses have been made 

in recent years to better understand some of the properties of 

performance metrics qualitatively and quantitatively. However, 

it is also commonly agreed upon that this process of 

fundamental works will take years to mature. Meanwhile, a 

compromising and empirical strategy is proposed here to gain 
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additional insights and to move forward in solving difficult 

problems with real-world complications.  
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